Questions continue to be raised about the teaching and learning of mathematics in schools and colleges and the levels of participation in the subject post-16. Questions continue to arise about its purpose and centrality in the schools national curriculum and the introduction of functional mathematics in vocational awards. In addition, concerns are being raised about the quality and quantity of students entering further and higher education to study courses that require mathematics such as plumbing.
We live in a technological society based on mathematics and science, so it is concerning that schools, colleges and universities continue to turn out students in large numbers who not only lack adequate mathematical and numeracy skills.
There needs to be national debates on this topic that will establish a consensus about these problems with the subjects and how to resolve them. Equally importantly is the urgent need to recognise and identify the problems associated with these subjects in the workplace. Work-based mathematics and numeracy are often overlooked and neglected. Meaningful research on mathematics and numeracy in the work place has been minimal and as a result there is a dearth of evidence and even then scant attention paid to what the real issues are.
It is also essential to develop more precise definitions of the various elements involved. In any research there is a requirement that a precise lexicology is developed and adhered to. These requirements are important given the different mathematical and numerical skills and competences that exist in different work place situation Key questions need to be answered including:
- What mathematical and numerical skills are important in each identified work situation and how best are these identified?
- What attitudes towards numeracy and mathematics need to be developed and encouraged by employers, employees, parents and teachers?
- How best can these subjects be taught and learnt in traditional classroom situations and how important is the context in which teaching and learning takes place?
- How does the context of numeracy and mathematics in the workplace become formalised in order to bring about an identification and understanding of the kind of skills that are needed in a given setting?
In the limited research on numeracy in the workplace issues about the lack a feeling for number has been identified as a problem. It would seem that the school curriculum particularly at primary level has paid little attention to this extremely important element and it remains to be seen if the numeracy strategy will bring about a sustained and lasting improvement. The inability to manipulate and understand the fundamental operations associated with number creates later problems irrespective of the ultimate aspiration of the learners. For example, the inability to estimate and transpose numbers and equations makes for fundamental difficulties later.
Too often in the past, reforms to the mathematics curriculum diluted the above essential building blocks for numeracy skills. The relevance and fitness of purpose of the school/college mathematics content needs to match the future needs and aspirations of the learners.
This is important, as the young adults leaving these institutions will enter a wide variety of work situations and occupations that will in turn require varying degrees of numerical and mathematical skills and competences. Careful analysis is needed to identify and then introduce the appropriate content at the right time into the curriculum.
Clearly there are fundamental elements that all learners require to learn but with the necessary differentiations that reflect their career intentions. It must be accepted that very few will study mathematics to any depth whilst the vast majority will require a basic foundation and grounding in numerical skills and mathematical techniques in order to cope with the demands of chosen occupations. The curriculum needs to be configured to recognise these demands and at the same time excite and stimulate the learners whatever their needs.
One real challenge for the curriculum reformers is the fact that the whole curriculum is restrictive because of including other key curriculum subjects. The expectation that numerical skills and mathematical techniques taught in schools and colleges should be capable of satisfying the total needs of the learners whatever their career intention is absurd. The content must be seen as relevant and be significantly informed by employers. Employers and their professional institutes must be involved in assisting the identification of what is required in their particular work place. Sadly to date this essential element has been lacking.
The farce surrounding the introduction of functional mathematics again highlighted that there is still a long way to go before the problems with the teaching and learning of work based mathematics and numeracy are resolved.